Monday, December 12, 2016
Transistor A Deep Look
Transistor A Deep Look
Transistors are three terminal active devices made from different semiconductor materials that can act as either an insulator or a conductor by the application of a small signal voltage. The transistors ability to change between these two states enables it to have two basic functions: switching (digital electronics) or amplification (analogue electronics). Then Bipolar Transistors have the ability to operate within three different regions:
- Active Region the transistor operates as an amplifier and Ic = ?.Ib
- Saturation the transistor is Fully-ON operating as a switch and Ic = I(saturation)
- Cut-off the transistor is Fully-OFF operating as a switch and Ic = 0
A Typical
Bipolar Transistor
Bipolar Transistor
The word Transistor is an acronym, and is a combination of the wordsTransfer Varistor used to describe their mode of operation way back in their early days of development. There are two basic types of bipolar transistor construction, PNP and NPN, which basically describes the physical arrangement of the P-type and N-type semiconductor materials from which they are made.
The Bipolar Transistor basic construction consists of two PN-junctions producing three connecting terminals with each terminal being given a name to identify it from the other two. These three terminals are known and labelled as the Emitter ( E ), the Base ( B ) and the Collector ( C ) respectively.
Bipolar Transistors are current regulating devices that control the amount of current flowing through them in proportion to the amount of biasing voltage applied to their base terminal acting like a current-controlled switch. The principle of operation of the two transistor types PNP and NPN, is exactly the same the only difference being in their biasing and the polarity of the power supply for each type.
Bipolar Transistor Construction
The construction and circuit symbols for both the PNP and NPN bipolar transistor are given above with the arrow in the circuit symbol always showing the direction of conventional current flow between the base terminal and its emitter terminal. The direction of the arrow always points from the positive P-type region to the negative N-type region for both transistor types, exactly the same as for the standard diode symbol.
Bipolar Transistor Configurations
As the Bipolar Transistor is a three terminal device, there are basically three possible ways to connect it within an electronic circuit with one terminal being common to both the input and output. Each method of connection responding differently to its input signal within a circuit as the static characteristics of the transistor vary with each circuit arrangement.
- Common Base Configuration has Voltage Gain but no Current Gain.
- Common Emitter Configuration has both Current and Voltage Gain.
- Common Collector Configuration has Current Gain but no Voltage Gain.
The Common Base (CB) Configuration
As its name suggests, in the Common Base or grounded base configuration, the BASE connection is common to both the input signal AND the output signal with the input signal being applied between the base and the emitter terminals. The corresponding output signal is taken from between the base and the collector terminals as shown with the base terminal grounded or connected to a fixed reference voltage point.
The input current flowing into the emitter is quite large as its the sum of both the base current and collector current respectively therefore, the collector current output is less than the emitter current input resulting in a current gain for this type of circuit of 1 (unity) or less, in other words the common base configuration attenuates the input signal.
The Common Base Transistor Circuit
This type of amplifier configuration is a non-inverting voltage amplifier circuit, in that the signal voltages Vin and Vout are in-phase. This type of transistor arrangement is not very common due to its unusually high voltage gain characteristics. Its output characteristics represent that of a forward biased diode while the input characteristics represent that of an illuminated photo-diode.
Also this type of bipolar transistor configuration has a high ratio of output to input resistance or more importantly load resistance ( RL ) to input resistance ( Rin ) giving it a value of Resistance Gain. Then the voltage gain ( Av ) for a common base configuration is therefore given as:
Common Base Voltage Gain
Where: Ic/Ie is the current gain, alpha ( ? ) and RL/Rin is the resistance gain.
The common base circuit is generally only used in single stage amplifier circuits such as microphone pre-amplifier or radio frequency ( Rf ) amplifiers due to its very good high frequency response.
The Common Emitter (CE) Configuration
In the Common Emitter or grounded emitter configuration, the input signal is applied between the base, while the output is taken from between the collector and the emitter as shown. This type of configuration is the most commonly used circuit for transistor based amplifiers and which represents the normal method of bipolar transistor connection.
The common emitter amplifier configuration produces the highest current and power gain of all the three bipolar transistor configurations. This is mainly because the input impedance is LOW as it is connected to a forward biased PN-junction, while the output impedance is HIGH as it is taken from a reverse biased PN-junction.
The Common Emitter Amplifier Circuit
In this type of configuration, the current flowing out of the transistor must be equal to the currents flowing into the transistor as the emitter current is given as Ie = Ic + Ib.
As the load resistance ( RL ) is connected in series with the collector, the current gain of the common emitter transistor configuration is quite large as it is the ratio of Ic/Ib. A transistors current gain is given the Greek symbol of Beta, ( ? ).
As the emitter current for a common emitter configur
Available link for download
Labels:
a,
deep,
look,
transistor