Wednesday, January 11, 2017
What are the different Classes of Amplifier
What are the different Classes of Amplifier
Amplifier Classes Explained...
Not all amplifiers are the same and there is a clear distinction made between the way their output stages operate. The main operating characteristics of an ideal amplifier are linearity, signal gain, efficiency and power output but in real world amplifiers there is always a trade off between these different characteristics.
Generally, large signal or Power Amplifiers are used in the output stages of audio amplifier systems to drive a loudspeaker load. A typical loudspeaker has an impedance of between 4? and 8?, thus a power amplifier must be able to supply the high peak currents required to drive the low impedance speaker.
One method used to distinguish the electrical characteristics of different types of amplifiers is by class, and as such amplifiers are classified according to their circuit configuration and method of operation. Then Amplifier Classes is the term used to differentiate between the different amplifier types.
Amplifier Classes represent the amount of the output signal which varies within the amplifier circuit over one cycle of operation when excited by a sinusoidal input signal. The classification of amplifiers range from entirely linear operation (for use in high-fidelity signal amplification) with very low efficiency, to entirely non-linear (where a faithful signal reproduction is not so important) operation but with a much higher efficiency, while others are a compromise between the two.
Amplifier classes are mainly lumped into two basic groups. The first are the classically controlled conduction angle amplifiers forming the more common amplifier classes of A, B, AB and C, which are defined by the length of their conduction state over some portion of the output waveform, such that the output stage transistor operation lies somewhere between being fully-ON and fully-OFF.
The second set of amplifiers are the newer so-called switching amplifier classes of D, E, F, G, S, Tetc, which use digital circuits and pulse width modulation (PWM) to constantly switch the signal between fully-ON and fully-OFF driving the output hard into the transistors saturation and cut-off regions.
The most commonly constructed amplifier classes are those that are used as audio amplifiers, mainly class A, B, AB and C and to keep things simple, it is these types of amplifier classes we will look at here in more detail.
Class A Amplifier
Class A Amplifiers are the most common type of amplifier class due mainly to their simple design. Class A, literally means the best class of amplifier due mainly to their low signal distortion levels and are probably the best sounding of all the amplifier classes mentioned here. The class A amplifier has the highest linearity over the other amplifier classes and as such operates in the linear portion of the characteristics curve.
Generally class A amplifiers use the same single transistor (Bipolar, FET, IGBT, etc) connected in a common emitter configuration for both halves of the waveform with the transistor always having current flowing through it, even if it has no base signal. This means that the output stage whether using a Bipolar, MOSFET or IGBT device, is never driven fully into its cut-off or saturation regions but instead has a base biasing Q-point in the middle of its load line. Then the transistor never turns OFF which is one of its main disadvantages.
Class A Amplifier
To achieve high linearity and gain, the output stage of a class A amplifier is biased ON (conducting) all the time. Then for an amplifier to be classified as Class A the zero signal idle current in the output stage must be equal to or greater than the maximum load current (usually a loudspeaker) required to produce the largest output signal.
As a class A amplifier operates in the linear portion of its characteristic curves, the single output device conducts through a full 360 degrees of the output waveform. Then the class A amplifier is equivalent to a current source.
Since a class A amplifier operates in the linear region, the transistors base (or gate) DC biasing voltage should by chosen properly to ensure correct operation and low distortion. However, as the output device is ON at all times, it is constantly carrying current, which represents a continuous loss of power in the amplifier.
Due to this continuous loss of power class A amplifiers create tremendous amounts of heat adding to their very low efficiency at around 30%, making them impractical for high-power amplifications. Also due to the high idling current of the amplifier, the power supply must be sized accordingly and be well filtered to avoid any amplifier hum and noise. Therefore, due to the low efficiency and over heating problems of Class A amplifiers, more efficient amplifier classes have been developed.
Class B Amplifier
Class B amplifiers were invented as a solution to the efficiency and heating problems associated with the previous class A amplifier. The basic class B amplifier uses two complimentary transistors either bipolar of FET for each half of the waveform with its output stage configured in a push-pull type arrangement, so that each transistor device amplifies only half of the output waveform.
In the class B amplifier, there is no DC base bias current as its quiescent current is zero, so that the dc power is small and therefore its efficiency is much higher than that of the class A amplifier. However, the price paid for the improvement in the efficiency is in the linearity of the switching device.
Class B Amplifier
When the input signal goes positive, the positive biased transistor conducts while the negative transistor is switched OFF. Likewise, when the input signal goes negative, the positive transistor switches OFF while the negative biased transistor turns ON and conducts the negative portion of the signal. Thus the transistor conducts only half of the time, either on positive or negative half cycle of the input signal.
Then we can see that each transistor device of the class B amplifier only conducts through one half or 180 degrees of the output waveform in strict time alternation, but as the output stage has devices for both halves of the signal waveform the two halves are combined together to produce the full linear output waveform.
This push-pull design of amplifier is obviously more efficient than Class A, at about 50%, but the problem with the class B amplifier design is that it can create distortion at the zero-crossing point of the waveform due to the transistors dead band of input base voltages from -0.7V to +0.7.
We remember from the Transistor tutorial that it takes a base-emitter voltage of about 0.7 volts to get a bipolar transistor to start conducting. Then in a class B amplifier, the output transistor is not biased to an ON state of operation until this voltage is exceeded.
This means that the the part of the waveform which falls within this 0.7 volt window will not be reproduced accurately making the class B amplifier unsuitable for precision audio amplifier applications.
To overcome this zero-crossing distortion (also known as Crossover Distortion) class AB amplifiers were developed.
Class AB Amplifier
As its name suggests, the Class AB Amplifier is a combination of the Class A and the Class B type amplifiers we have looked at above. The AB classification of amplifier is currently one of the most common used types of audio power amplifier design. The class AB amplifier is a variation of a class B amplifier as described above, except that both devices are allowed to conduct at the same time around the waveforms crossover point eliminating the crossover distortion problems of the previous class B amplifier.
The two transistors have a very small bias voltage, typically at 5 to 10% of the quiescent current to bias the transistors just above its cut-off point. Then the conducting device, either bipolar of FET, will be ON for more than one half cycle, but much less than one full cycle of the input signal. Therefore, in a class AB amplifier design each of the push-pull transistors is conducting for slightly more than the half cycle of conduction in class B, but much less than the full cycle of conduction of class A.
In other words, the conduction angle of a class AB amplifier is somewhere between 180o and 360odepending upon the chosen bias point as shown.
Class AB Amplifier
The advantage of this small bias voltage, provided by series diodes or resistors, is that the crossover distortion created by the class B amplifier characteristics is overcome, without the inefficiencies of the class A amplifier design. So the class AB amplifier is a good compromise between class A and class B in terms of efficiency and linearity, with conversion efficiencies reaching about 50% to 60%.
Class C Amplifier
The Class C Amplifier design has the greatest efficiency but the poorest linearity of the classes of amplifiers mentioned here. The previous classes, A, B and AB are considered linear amplifiers, as the output signals amplitude and phase are linearly related to the input signals amplitude and phase.
However, the class C amplifier is heavily biased so that the output current is zero for more than one half of an input sinusoidal signal cycle with the transistor idling at its cut-off point. In other words, the conduction angle for the transistor is significantly less than 180 degrees, and is generally around the 90 degrees area.
While this form of transistor biasing gives a much improved efficiency of a
Available link for download